import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('D:\SEM
7\ML\dataset_p1.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = 'NaN',
strategy = 'most_frequent', axis = 0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
from sklearn.preprocessing import Imputer
from sklearn.impute import SimpleImputer
imputer = Imputer(missing_values = 'NaN',
strategy = 'most_frequent', axis = 0)
imputer = SimpleImputer(missing_values=np.nan,strategy='mean',verbose=0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
Variable Explorer:-
Dataset:-
Output:-
Code
:-
import numpy as
np
import matplotlib.pyplot
as plt
import pandas as
pd
dataset =
pd.read_csv('D:\SEM 7\ML\dataset2.csv')
X =
dataset.iloc[:, :].values
from sklearn.preprocessing
import LabelEncoder, OneHotEncoder
labelencoder_X =
LabelEncoder()
X[:, 0] =
labelencoder_X.fit_transform(X[:, 0])
#onehotencoder =
OneHotEncoder(categorical_features = [0])
#X =
onehotencoder.fit_transform(X).toarray()
X[:, 1] =
labelencoder_X.fit_transform(X[:, 2])
#onehotencoder =
OneHotEncoder(categorical_features = [1])
#X =
onehotencoder.fit_transform(X).toarray()
X[:, 2] =
labelencoder_X.fit_transform(X[:, 2])
onehotencoder =
OneHotEncoder(categorical_features = [0])
X =
onehotencoder.fit_transform(X).toarray()
onehotencoder =
OneHotEncoder(categorical_features = [4])
X =
onehotencoder.fit_transform(X).toarray()
onehotencoder =
OneHotEncoder(categorical_features = [6])
X =
onehotencoder.fit_transform(X).toarray()
Variable
Explorer:-
Dataset:-
Output:-